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Abstract

Graph neural architecture search (GraphNAS) has shown great potential for auto-
matically designing graph neural architectures for graph related tasks. However,
multi-task GraphNAS, capable of handling multiple tasks simultaneously and cap-
turing the complex relationships and dependencies between them, has been largely
unexplored in literature. To tackle this problem, we propose a novel multi-task
graph neural architecture search with task-aware collaboration and curriculum
(MTGC3), which is able to simultaneously discover optimal architectures for dif-
ferent tasks and learn the collaborative relationships among different tasks in a
joint manner. Specifically, we design the structurally diverse supernet to manage
multiple architectures and graph structures in a unified framework, which combines
with our proposed soft task-collaborative module to learn the transferability rela-
tionships between tasks. To further improve the architecture search procedure, we
develop the task-wise curriculum training strategy that reweighs the influence of
different tasks based on their relative difficulties. Extensive experiments show that
our proposed MTGC3 model achieves state-of-the-art performance against several
baselines in multi-task scenarios, demonstrating its ability to discover effective
architectures and capture collaborative relationships for multiple tasks.

1 Introduction

Graph-structured data has attracted lots of attentions in recent years for its flexible representation
ability in various domains. Graph neural networks (GNNs) such as GCN [17], GAT [39], and GIN [47]
have been proposed and achieved great success in many graph applications. To save human efforts on
designing GNN architectures for different tasks, graph neural architecture search (GraphNAS) [19, 7,
42] has been proposed to search for optimal GNN architectures. These automatically designed GNN
architectures have achieved competitive or better performances compared with manually designed
GNNs for a single task.

On the other hand, multi-task scenarios are ubiquitous for graph data. For example, in drug discovery,
predicting multiple properties of molecules can be regarded as multiple tasks. Properly capturing the
relationship between these tasks allows for better learning of them. Nevertheless, there has been no
work reported on automatically searching GNN architectures for multi-task scenarios in the literature.

In this paper, we study the important yet unexplored problem of multi-task GraphNAS for the first time.
Given that different GNNs employ different architectures for adaption to various graph tasks, we tackle
this problem through jointly customizing an architecture for each individual task and considering
the task collaborations to share useful information among different tasks. However, discovering
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the optimal GNN architectures for multiple tasks poses several challenges: (1) It is non-trivial to
manage multiple architectures within a supernet, which is crucial to guarantee the effectiveness of the
neural architecture search; (2) It is challenging to capture the complex relationships among different
tasks for information sharing during the searching process; (3) It remains a challenge to balance
the influence of different tasks on architecture optimization since different tasks may show diverse
difficulties and optimization patterns.

To address these challenges, we propose the multi-task graph neural architecture search with task-
aware collaboration and curriculum (MTGC3) in this paper. Our proposed MTGC3 model is able to
discover multiple optimal architectures within a unified supernet and simultaneously optimizes them
through learning the collaborative relationships of different tasks in a joint manner. Specifically, we
design the structurally diverse supernet to manage multiple architectures and graph structures within
a supernet for effective architecture search. Then, we introduce the soft task-collaborative module
to capture the complex relationships among tasks, enabling sharing useful information during the
searching process. We further develop the task-wise curriculum training strategy to better optimize
the supernet via reweighing the influence of different tasks on architecture optimization based on task
difficulties. Extensive experiments on both synthetic and real-world datasets validate the superiority
of our proposed MTGC3 model over existing baselines via customizing the optimal architecture for
each task and sharing useful information among them. Detailed ablation studies further verify the
effective designs of MTGC3.

Our contributions are summarized as follows.

• We are the first to investigate the problem of multi-task graph neural architecture search via
proposing the multi-task graph neural architecture search with task-aware collaboration and
curriculum (MTGC3), to the best of our knowledge.

• We propose to jointly discover optimal architectures for multiple tasks and capture their complex
relations within a unified framework by designing i) the structurally diverse supernet, ii) the soft
task-collaborative module, and iii) the task-wise curriculum training strategy.

• Extensive experimental results demonstrate that our proposed MTGC3 model outperforms state-
of-the-art baselines on both synthetic and real-world datasets.

2 Problem Formulation and Preliminaries

2.1 Message-passing graph neural network

GNNs are state-of-the-art models for graph machine learning, which typically follow a message
passing scheme where nodes aggregate information from their neighbors in each layer formulated as:

m
(l)
i = Agg(h(l)

j |j ∈ Ni) (1)

h
(l+1)
i = Update(m(l)

i ), (2)

where h
(l)
i is the representation of node i at the l-th layer, Ni denotes the neighbors of node i

derived from the adjacent matrix, Agg(·) is the aggregation function, Update(·) is an updating
function between two node representations. Different GNNs have different aggregation and updating
functions, which is the main search objective for GraphNAS.

2.2 Multi-task graph neural architecture search

Given a set of graph tasks {Tm}Mm=1, where each task has a set of graphs Gm = {g1m, g2m, · · · , gnm
m }

in a shared graph space G and the labels Ym = {y1m, y2m, · · · , ynm
m } in its own label space Ym. We

denote Y as the composition of all label spaces, i.e., Y =
⋃
{Ym}Mm=1. The goal of multi-task graph

learning is to design a model F : G → Y to map the graphs to the label space while minimizing the
loss function, i.e.,

argmin
F
L({F (Gm), Ym}Mm=1), (3)

where L is the multi-task loss function. Here we use multi-task graph classification as an example,
but the definition can be easily extended to multi-task node classification problems. In GraphNAS,
we mainly focus on the function f being GNNs. A typical GNN consists of two parts: an architecture
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Figure 1: Kendall corre-
lation coefficient of the
performance ranks of
different architectures
on different tasks.
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Figure 2: An overview of our proposed MTGC3 method. Step 1: Perform-
ing forward propagation through the structurally diverse supernet and the
soft task-collaborative module. Step 2: Updating architecture parameters
and the soft task-collaborative module. Step 3: Updating model weights
through the task-wise curriculum learning.

α ∈ A and learnable weights w ∈ W , where A and W denotes the architecture space and the
weight space, respectively. Therefore, we denote GNNs in Eq.(1) as the following mapping function:
Fα,w : G → Y . In this paper, we focus on the aggregation functions Agg(·). Specifically, we consider
a search space of standard layer-by-layer architectures without sophisticated connections such as
residual or jumping connections, though our proposed method can be easily generalized. We choose
five widely used message-passing GNN layers as our operation candidate set O, including GCN [17],
GAT [39], GIN [47], SAGE [11], k-GNN [27], and ARMA [12]. Besides, we also adopt MLP, which
does not consider graph structures.

3 The Proposed Method

To develop a GraphNAS method for multi-task learning, we first consider what designs should be
included that benefit multi-task learning. We propose an assumption on which our method is based.
Assumption 3.1. Different GNN architectures are suitable for learning different graph tasks. For ex-
ample, if we search architectures separately for different tasks, i.e., the following bi-level optimization
problem:

αm = argmin
α
L(Fα,w(α)(Gm), Ym)

w(α) = argmin
w
L(Fα,w(Gm), Ym),

(4)

where αm is the most suitable architecture for task Tm. Then, the optimal architecture αm can be
different for different tasks.

Assumption 3.1 implies that different tasks have different characteristics, while these characteristics
require different architectures. To validate this assumption, we randomly choose several architectures
and evaluate them on different tasks individually on two graph datasets: Tox21 and ToxCast (refer
to Section 4.1 for details). We rank these architectures according to their performance for each
task. Then we use Kendall rank correlation to compute the similarity score between rankings of the
architectures for all pairs of tasks. The result is shown in Figure 1. We can find that many tasks have
a negative correlation between different architectures, indicating that different architectures behave
very differently on different tasks. The result illustrates the necessity to customize an architecture for
different tasks instead of using a shared architecture.

On the other hand, it is also important to share useful information between different tasks, which is a
common and basic assumption in multi-task learning [3]. Combining these two aspects, our goal is
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to simultaneously search multiple architectures for different tasks while learning the collaborative
relationships of them. Figure 2 shows the overall framework of our method. In the following
subsections, we present our proposed method in detail.

3.1 Structurally diverse supernet

Based on Assumption 3.1, we need to search multiple architectures for different tasks simultaneously.
To effectively manage multiple architectures, we propose the structurally diverse supernet, following
the widely adopted supernets in NAS [29]. The design principle is that, although different tasks
require different architectures, we cannot completely separate these architectures since they need to
share useful knowledge. We propose to balance this tradeoff by disentangling the supernet. In our
structurally diverse supernet, the node representation at each layer is divided into N chunks with
different GNN operations. In addition, we make the graph structure to be diverse in different chunks
to further disentangle the hidden features and help different chunks to learn more specific knowledge
for the corresponding tasks. A disentangled layer can be formulated as follows:

f(x,A) =∥Ni=1 fi(x,Ai), (5)

where f one of the layers in the mapping function F , x is the hidden features given by the last layer,
and A is the adjacent matrix. Moreover, ∥ represents concatenation, Ai is the adjacent matrix of
the graph used in the i-th chunk, fi denotes the GNN operation of the i-th chunk. By stacking the
disentangled layers into a GNN, we can capture a variety of latent factors of the graphs by different
types of GNN operations and graph structures, which is beneficial for multi-task learning.

Following the NAS literature [24], we adopt supernets to search for the optimal architecture in a
differentiable way. Specifically, in the supernet, all possible operations are jointly considered by
mixing different operations into a mixed operation, i.e., f(x) =

∑
ok∈O αkok(x), where ok is a

candidate operation and O is the operation search space, α denotes the architecture parameters to
be optimized. We combine the DARTS manner with our structurally diverse supernet to enable
differentiable optimization, which can be formulated as follows:

fi(x,Ai) =
∑
ok∈O

αikoik(x,Ai), (6)

where αik is the architecture parameter of the k-th operation at the i-th chunk. As a result, multiple
architectures in different chunks are contained in the supernet and they can also transfer knowledge
to each other.

To adopt diverse structures for different chunks, we use a parameter-efficient and differentiable
manner to generate the weights of edges for the graph structures, which can be formulated as follows:

Ai,(u,v) = δA(u,v) + (1− δ)A(u,v) · sigmoid((Su
i xu)

⊤(Sv
i xv)), (7)

where Ai,(u,v) is the weight of edge between node u and v in Ai, A(u,v) indicates if there is an edge
between node u and v in the original graph, Su

i and Sv
i are learnable parameters to generate edge

weights of the i-th chunk, δ is the hyper-parameter. Consequently, we generate an adjacent matrix Ai

in a continuous space. We can conveniently use gradient based methods to optimize it.

3.2 Soft task-collaborative module

Using the structurally diverse supernet, different chunks can exchange information to share knowledge.
However, the independence of chunks is not encouraged, and therefore representations could be
potentially mixed together. To further ensure that different chunks of the supernet correspond to
relatively independent architectures, we propose a soft task-collaborative module. First, we rewrite
Eq. (6) as follows:

fi(x,Ai) =
∑
ok∈O

αik

∑
j

oijk(xj ,Ai), (8)

where xj is the output of the j-th chunk of the previous layer, and oijk is the GNN operation only
containing the corresponding parameters. For example, many types of GNN operations in Eq. (6)
contain a parameter matrix with the shape d × dc in the node updating function in Eq. (2), where
dc is the dimensionality of each chunk and d = N × dc is the overall dimensionality. For these
operations, we can split the parameter matrix into N matrices with the shape dc × dc, where the j-th
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matrix corresponds to the part of xj . We denote oijk as the GNN operation only containing this part
of parameters.

Using Eq.(8), we introduce our proposed soft task-collaborative module. Our goal is to keep the
independence of each chunk, i.e., the i-th chunk of node representation at the previous layer mainly
contributes to the i-th chunk of node representation at the next layer. We formulate it as follows:

fi(x,Ai) =
∑
ok∈O

αik

∑
j

pijoijk(xj ,Ai), pij =

{
1 if i = j,

tanh θij otherwise, (9)

where θ is learnable parameters. pij represents the impact of the j-th chunk of node representation
at the previous layer to the i-th chunk of node representation at the next layer. We remark that the
absolute value of tanh θ indicates the amount of contribution while the sign of tanh θ indicates the
positivity or negativity of the correlation. Since tanh θ ∈ (−1, 1), we ensure that node representation
from the same chunk has the largest impact on the next layer. Therefore, the architectures of different
chunks are relatively independent, which helps to make the hidden representation disentangled
and contain more useful information for different tasks. Besides, we initialize θ as 0 so that the
initial structurally diverse supernet simply consists of several separated GNN architectures at the
beginning. By updating θ in the training procedure, our proposed method can automatically learn the
transferability between architectures.

After learning representations containing diverse information by the supernet, our model makes
predictions for multiple tasks. We propose two approaches to building the task head.

Task-separated head: We manually pair each chunk of the supernet to a task, i.e., the node
representation of the last layer of the supernet is split according to the chunks, and each chunk
is connected to the head of the corresponding task. In this case, the architecture of each chunk
can be regarded as the customized architecture for the corresponding task, and pij represents the
collaborative pattern between different tasks, i.e., whether to share useful information between them.
Since the number of chunks needs to be equal to the number of tasks, this approach is only applicable
when the number of tasks is not too large.

Cross-mixed head: When the number of tasks is large, using the task-separated head will result
in the dimensionality of the representation growing too large. Therefore, we further propose the
cross-mixed head by randomly pre-assigning a few dimensions to each task, i.e., the head of each
task is only connected to the representations of these dimensions. In practice, we overlay a mask
tensor sampled from a Bernoulli distribution on the weights of the classification heads. This approach
allows each task to acquire different hidden features while preventing some tasks from dominating all
the architectures in the supernet.

3.3 Task-wise curriculum training

Our framework is end-to-end and can be optimized by the multi-task loss. But using multi-task loss
may cause difficulties in training due to task imbalances [5]. At first we give the proposition below to
analyze the gradient of different chunks in our model. We denote wj′ as the parameters that generate
xj in the last layer.
Proposition 3.2. When using the overall loss function of multiple tasks L for gradient back-
propagation in our framework, the partial derivative of L with respect to wj′ is:

∂L
∂wj′

=
∑
i

pij′
∂L
∂fi

∑
ok∈O

αik
∂oij′k(xj′ ,Ai)

∂wj′
. (10)

For the proof of Proposition 3.2, please refer to Appendix B. In Eq. (10), we can regard the latter part
of the right side

∑
ok∈O αik

∂oij′k(xj′ ,Ai)

∂wj′
as the partial derivative of the mixed operation in a classical

supernet in Eq. (6), and ∂L
∂wj′

is the sum of these partial derivatives weighted by a score pij′
∂L
∂fi

.
However, different tasks may have different difficulties and show diverse patterns in the optimization
process, e.g., tasks are unbalanced in terms of backpropagated gradient scales, some tasks with
large score pij′

∂L
∂fi

may dominate the training process. Besides, in our model, the optimization
curves of different chunks can also differ greatly, which makes the optimization of our model further
challenging.
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Algorithm 1: MTGC3

Input: Training dataset {Gi}Mi=1 and {Yi}Mi=1, learning rates ηα, ηS, ηθ and ηw
1 Initialize learnable parameters w, α, S and θ. Set γ = 0;
2 while not converge do
3 Forward propagate by Eq.(5) and Eq.(9) to calculate loss L;
4 α← α− ηα∇αL(w,α,S, θ), S← S− ηS∇SL(w,α,S, θ), θ ← θ − ηθ∇θL(w,α,S, θ);
5 Using ∂L

∂fj
to calculate p′ by Eq.(11);

6 Forward propagate by Eq.(5) and Eq.(11) to calculate loss L′;
7 w ← w − ηw∇wL′(w,α,S, θ);
8 Increase γ;
9 end

To tackle these problems, we propose the task-wise curriculum training strategy. Specifically, we
modify Eq. (9) using a curriculum strategy as:

f ′
i(x,Ai) =

∑
ok∈O

αik

∑
j

p′ijoijk(xj ,Ai), p′ij = γpij + (1− γ)
∥ ∂L

∂fj
∥2

∥ ∂L
∂fi
∥2

tanh
pij ∥ ∂L

∂fi
∥2

∥ ∂L
∂fj
∥2

,

(11)

where γ is a parameter that increases from 0 to 1 during the training process, and ∥ ∗ ∥2 is the
l2-normalization of the target partial derivative for measuring its scale. We use Eq. (11) instead of
Eq. (9) while calculating the gradients of w. Using this curriculum strategy benefits the optimization

process of our framework. When γ = 0, we have p′ij <
∥ ∂L

∂fj
∥2

∥ ∂L
∂fi

∥2
, thus the contribution of tasks with

large partial derivatives to the loss function is suppressed. For tasks with small ∥ ∂L
∂fj
∥2, the tanh

function tends to be a linear function, thus p′ij ≈ pij and their contributions are not affected. As
γ increases, Eq. (11) gradually converges to Eq. (9), keeping Eq. (11) an unbiased estimate of the
original loss function. Note that gradients are often used in curriculum learning to measure the
difficulty of data [40, 4, 55, 41, 53], but our method introduce this idea to measure the difficulty
of tasks by gradients to implement task-aware curriculum learning and adjust the training process
accordingly.

The overall training procedure is shown in Algorithm 1. The entire model can be learned end-to-end
by gradient based approaches. We update the learnable parameters w, α, θ, and S in an iterative
way. After training, we keep the architecture and parameters in the supernet for evaluation without
the architecture discretization step, enhancing flexibility on architecture search and simplifying the
optimization strategy.

4 Experiments

4.1 Experiment Setting

Datasets. We adopt both synthetic and real-world multi-task graph datasets.

• Synthetic Datasets. We construct a synthetic multi-task node classification dataset named Multi-
GNN Label (MGL). We generate several MGL graphs using different graph generation methods,
e.g., the Erdös-Rényi model (MGL-ER), the Watt-Strogatz small-world model (MGL-WS), and
the Barabási-Albert preferential attachment (MGL-BA). The node features are sampled from a
Gaussian distribution. To generate labels with diverse characteristics, we adopt different GNNs
with random parameters to generate multiple hidden node representations. For each hidden
representation, we use the KNN algorithm to group nodes into 5 classes. As such, each GNN can
generate node labels corresponding to a node classification task. Specifically, we use two random
MLP, GCN, GAT, and SAGE to generate 8 labels.

• Real-world Datasets. We choose three widely-used multi-task graph classification datasets
included OGB [13]: OGBG-Tox21 [14], OGBG-ToxCast [35], and OGBG-Sider [18]. These
datasets contain a set of properties of toxicological assays or adverse drug reactions of drug
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Table 1: The test accuracy of all the methods on the synthetic dataset MGL and the test ROC-AUC of
all the methods on the real-world datasets OGBG. We run all experiments 10 times with different
random seeds and report the average results with standard deviations. The best results are in bold.

Dataset MGL-ER MGL-WS MGL-BA Tox21 ToxCast Sider

GCN 51.50±0.37 50.17±0.14 50.41±0.21 76.41±0.60 64.91±0.53 62.02±1.71

GAT 50.95±0.17 49.91±0.19 47.77±0.52 75.62±0.89 63.52±0.57 58.57±1.98

GIN 52.40±0.41 47.67±0.28 50.48±0.45 77.20±0.85 64.58±0.49 58.48±1.63

SAGE 62.58±0.13 64.77±0.14 66.15±0.25 75.87±0.49 64.08±0.65 60.12±0.97

k-GNN 56.49±0.29 58.80±0.14 62.19±0.47 76.87±0.51 63.86±0.59 60.07±1.14

ARMA 63.90±0.29 64.20±0.28 65.05±0.37 75.93±0.87 64.36±0.83 60.79±1.24

MLP 50.08±0.13 40.93±0.13 43.63±0.20 74.47±0.75 62.67±0.61 60.70±1.29

Random 57.40±0.22 60.80±0.19 59.15±0.17 76.20±0.26 64.89±0.60 58.87±1.38

DARTS 64.94±0.20 64.16±0.29 62.39±0.23 76.96±0.57 65.23±0.60 60.64±1.37

GNAS 49.76±2.95 61.17±0.00 64.28±0.95 74.97±0.41 61.85±1.07 57.11±1.31

PAS - - - 75.45±0.47 63.85±0.35 59.31±1.48

GRACES - - - 74.82±0.85 65.77±0.53 61.85±2.56

MTGC3 66.33±0.34 67.39±0.42 68.36±0.22 77.99±0.42 66.36±0.26 62.08±1.76

molecules, where molecules can be represented as graphs and each task corresponds to predicting
a property of drug molecules.

Baselines. We compare our model with 12 baselines from the following three different categories.

• Manually Design GNNs: we include the GNNs in our search space (refer to Section 2.2) as our
baselines, i.e., GCN, GAT, GIN, SAGE, k-GNN, and ARMA. We also include MLP as a baseline.

• Graph Neural Architecture Search: We consider three representative GraphNAS baselines:
GNAS [7], an reinforcement learning based method; PAS [42] and GRACES [32], two recent
differentiable GraphNAS methods. Note that since GNAS and GRACES are specifically designed
for graph classification tasks. We also consider two classic NAS baselines, random search and
DARTS [24] combined with our search space.

Experimental Details. We set the number of layers as 3 for synthetic datasets, and 5 for real-world
datasets. For all datasets except ToxCast, we use the task-separate head. For ToxCast, we use the
cross-mixed head with 16 chunks.

Number of Learnable Parameters. Denote |V |, |E| as the number of nodes and edges in the
graph, respectively, and d as the dimensionality of hidden representations. We denote dS as the
dimensionality of the structure generation part, i.e., S is a matrix with the shape dS × d. The number
of learnable parameters of a typical message-passing GNN is O(d2). In our framework, w, α, θ,
and S has O(|O|d2), O(N |O|), O(d2), and O(Ndsd) parameters, respectively. The total number
of learnable parameters is O(N(|O|+ dSd) + |O|d2). To guarantee fair comparison, we use small
dS and d in the experiments so that the different models are comparable in terms of the number of
learnable parameters.

4.2 Qualitative Results

We summarize the experimental results in Table 1. For the results on synthetic datasets, our model
outperforms all baselines in all three settings. Specifically, we find that most GNNs perform poorly,
indicating that they cannot well handle multiple tasks. The existing GraphNAS methods fail to
outperform some manually designed GNNs on these graphs. In contrast, MTGC3 shows much better
results by searching multiple architectures and capturing collaborative patterns between tasks.

As for the results on the three real-world multi-label graph classification benchmarks, we find that
some NAS methods, e.g., DARTS and GRACES, achieve slightly better results than manually de-
signed GNNs in some cases, demonstrating the importance of automating architectures. Nevertheless,
these methods still fail to design suitable architectures for multiple tasks. Our proposed MTGC3

model again outperforms all the baselines on the three datasets, demonstrating that our model is able
to search for proper architectures in real-world multi-task scenarios.
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Figure 4: Visualizations of the absolute values of pij of different
layers in MGL-ER.
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Variant MGL-WS Tox21 ToxCast

NoStru 67.17±0.60 77.42±1.00 66.30±0.30

Separate 65.35±0.86 76.20±0.98 66.12±0.80

FullCollab 67.21±0.55 77.83±0.71 66.01±0.50

MLPHead 64.47±1.16 77.62±0.57 64.61±0.53

NoCL 67.15±0.52 77.68±0.48 66.00±1.07

MTGC3 67.39±0.42 77.99±0.42 66.36±0.26

Table 2: The performance of different variants of
MTGC3 on different datasets.

4.3 Visualization and Analysis

To gain deeper insights of our method, we further conduct some analyses. Specifically, we generate
four labels by a random MLP, GCN, GAT, and SAGE respectively in MGL, and denote the labels
as 1, 3, 5, 7. Then, we add Gaussian noises to the node representations and generate four additional
labels denoted as 2, 4, 6, 8. As a result, we generate four pairs of highly correlated tasks, i.e., label
1 and 2 are related, etc. Then, we visualize the architecture parameters, i.e., αik, at the first layer.
The results on MGL-ER are shown in Figure 3. The results show that MTGC3 can search for proper
architectures for different tasks. For the tasks directly generated by random GNNs (see chunks 1, 3,
5, 7), MTGC3 has the highest α on the corresponding operation.

In addition, we visualize the absolute values of pij in the soft task-collaborative module in Figure 4.
Large absolute values indicate that knowledge can be transferred between tasks. For the last layer, we
can observe that more knowledge can be transferred between our constructed task pairs, e.g., chunk 1
and 2, chunk 5 and 6. The results demonstrate that the soft task-collaborative module can accurately
capture the transferability between tasks. Meanwhile, for the 1st layer, the absolute values exhibit
more complex patterns, indicating that some complex knowledge sharing between chunks may exist.
It is also worth noting that the absolute values of pij at the 1st layer are generally larger than that
at the last layer. This phenomenon indicates that there is more shared information at the shallow
layers than at the deep layers, which is consistent with the branched sharing architecture in multi-task
learning [6].

The above analyses are for the task-separated head case. We further analyze the cross-mixed head
case. We visualize the architecture parameters αik on ToxCast dataset in Figure 5. We can observe
that different chunks choose different operations, indicating that different chunks still need to find the
proper operations to fit the tasks assigned through the cross-mixed head.

4.4 Ablation Study

In this section, we evaluate the effectiveness of each module of our framework by conducting ablation
studies. We compare the following variants of our model:

• MTGC3-NoStru: we use the original graph structure for all chunks.
• MTGC3-Separate: we disable the collaboration between chunks, i.e., ∀i ̸= j, pij = 0, so that

different tasks search architectures separatedly.
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• MTGC3-FullCollab: we let pij = 1, i.e., full collaboration, thus the independence of each chunk
is not guaranteed.

• MTGC3-MLPHead: we use an MLP as the task head.

• MTGC3-NoCL: we remove the task-wise curriculum training and use standard gradient descents.

We report the results of these variants on MGL-ER, Tox21, and ToxCast in Table 2. We have the
following observations. Overall, our proposed full MTGC3 model outperforms all the variants under
all three settings, demonstrating that each component of our method is indispensable to achieve
satisfactory performance in multi-task graph learning. The performance margin above MTGC3-
NoStru illustrates the validity of learning diverse graph structures for different chunks. Either
separating all chunks by setting pij = 0 or allowing maximum collaboration by setting pij = 1
causes performance degradation, demonstrating that our soft task-collaborative module is essential
to capture the transferability between tasks. In addition, if we use an MLP as the task head, the
performance will drop severely, indicating the importance of the task-separated head and cross-mixed
head in multi-task learning. Moreover, the task-wise curriculum training also has a consistently
positive impact on the model performance.

5 Related Works

5.1 Graph neural network and multi-task learning

Message-passing GNNs [17, 39, 47, 11, 23, 22, 21, 20, 50, 51] have been proposed as an effective
framework for graph machine learning following the neighborhood aggregation scheme. At each layer,
nodes learn representations by aggregating their neighbors’ representations. Then, the representation
of the whole graph is learned by pooling all node representations [17, 47]. Graph structure learning
technique [15, 44] is also applied in GNNs, which learns a better graph structure for message passing
during training procedure. Graph structure learning is beneficial for enhancing the robustness of
graph embedding, especially in noisy scenarios.

Multi-task learning [3, 16, 26] aims to jointly learn a set of tasks with shared parameters. Recently,
some works learn to exploit similarities between tasks in GNNs to benefit multi-task graph learning.
New et al. [28] explore the influence of the Hessians of each task’s loss function in multi-task graph
learning. SGNN-EBM [25] learns task relationships in the latent space by knowledge extracted from
external datasets. MetaLink [2] uses graphs to model the relationship between data and tasks in the
relational multi-task setting. Nevertheless, these works do not explore automatic architecture design
in multi-task graph learning.

5.2 Neural architecture search

Recent years have witnessed a surge of research interest in NAS methods, which aim at designing
neural architectures automatically for given tasks. Since the architecture search space is discrete,
reinforcement learning (RL) [56, 29] and evolution algorithm (EA) [45? ] are often used in NAS
methods. Besides, another strategy is transferring the discrete architecture search space into a
differentiable space, e.g., DARTS [24] and SNAS [46] construct a supernet where all candidate
operations are mixed to update the architecture as well as the weights simultaneously through the
classical gradient descent method.

GraphNAS is gaining increasing attention from the research community [19, 7, 10, 31, 52, 33, 54, 52],
including RL [7, 30], EA [49, 9], and differentiable NAS [19, 31, 32] algorithms. GraphNAS works
also consider searching specific modules in graph representation learning, such as message passing
layers [1], attention layers [10], and pooling operations [42]. However, existing GraphNAS methods
only consider a single task and neglect the multi-task scenarios.

Outside of graphs, some multi-task NAS searches for a unified architecture for multiple tasks.
However, most existing works only focus on searching the interaction operations between tasks but
ignore designing different task backbones [36, 8, 37, 38, 43, 34, 48]. More importantly, all the above
works focus on computer vision task but do not consider graph tasks.
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6 Conclusion

In this paper, we propose a novel MTGC3 method to tackle GraphNAS problem in multi-task
scenarios. Our method searches for multiple architectures for different tasks while considering task
collaboration by designing the structurally diverse supernet, the soft task-collaborative module, and
the task-wise curriculum training. Extensive experiments on both synthetic and real-world datasets
demonstrate that MTGC3 can achieve state-of-the-art performance for multi-task graph learning. One
possible limitation of this work is that our method only considers static and homogenous graphs and
does not account for more complex graphs, such as dynamic or heterogenous graphs. Future research
should explore methods that can effectively handle these complex graph types, in order to broaden
the usage of the method in real-world applications.
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